

Journal of Molecular Catalysis A: Chemical 181 (2002) 143-149

www.elsevier.com/locate/molcata

Direct oxidation of hydrogen to hydrogen peroxide over Pd-containing fluorinated or sulfated Al₂O₃, ZrO₂, CeO₂, ThO₂, Y₂O₃ and Ga₂O₃ catalysts in stirred slurry reactor at ambient conditions

A.G. Gaikwad, S.D. Sansare, V.R. Choudhary*

Chemical Engineering Division, National Chemical Laboratory, Pune 411008, India Received 23 January 2001; received in revised form 8 June 2001; accepted 27 June 2001

Abstract

Direct oxidation of H_2 to H_2O_2 over powdered PdO-containing fluorinated or sulfated Al_2O_3 , ZrO_2 , CeO_2 , ThO_2 , Y_2O_3 , Ga_2O_3 catalysts with or without pre-reduction by hydrazine, using a pure water or $0.02 \text{ M} H_2SO_4$ as reaction medium and a gaseous feed consisting of 1.7 vol.% H_2 in O_2 , in a magnetically stirred glass reactor at $22 \,^{\circ}C$ and atmospheric pressure has been investigated. The catalysts have been characterized for their surface area and also by CO chemisorption. The performance of the catalysts in the decomposition of H_2O_2 at $22 \,^{\circ}C$ has also been studied. The results showed a strong influence of catalyst reduction, fluorination (or chlorination) or sulfatation of the catalyst support and the acidity of reaction medium on both the conversion and H_2O_2 selectivity in the direct oxidation of H_2 . An acidic medium is essential for achieving both the high conversion and high selectivity in the H_2 oxidation. The reduced catalysts showed much lower H_2O_2 selectivity in the H_2 oxidation activity. The water in the H_2 to H_2O_2 oxidation over the above catalysts is formed in parallel and/or consecutive reactions, depending upon the catalyst used. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Oxidation of H_2 to H_2O_2 ; Supported palladium catalysts; Fluorinated palladium catalyst; Sulfated palladium catalyst; Decomposition of H_2O_2

1. Introduction

Hydrogen peroxide is an environ-friendly strong oxidizing agent. Hence, its demand for domestic/industrial wastewater treatment, water disinfection, catalytic oxidation processes and other industrial applications has been increasing day-by-day. The presently practiced anthraquinone process [1] for the production of H_2O_2 has several other limitations; the cost of H_2O_2 produced by this process is not low enough to use it for producing bulk chemicals and/or for wastewater treatment. It is, therefore, of great practical interest to produce H_2O_2 more economically by a novel process, which is also environmentally clean, such as that based on the direct oxidation of H_2 . Direct oxidation of H_2 to H_2O_2 over different Pd-containing catalysts has been disclosed in several patents [2,3]. But the information on this process in the published papers is scarce [2–4]. Very recently,

^{*} Corresponding author. Tel.: +91-20-589-3300x2163; fax: +91-20-589-3041/3355.

E-mail addresses: vrc@che.ncl.res.in, vrc@ems.ncl.res.in (V.R. Choudhary).

^{1381-1169/02/\$ –} see front matter © 2002 Elsevier Science B.V. All rights reserved. PII: S1381-1169(01)00359-4

we have suggested the use of a novel composite Pd-membrane catalyst for the non-hazardous direct oxidation of H₂ to H₂O₂ [2]. Earlier, Fu et al. [4] have carried out liquid-phase oxidation of H₂ to H₂O₂ in an acidic medium over Pd/fluorinated carbon catalyst at high pressures (0.5–2.3 MPa) at -10 to 25 °C; the maximum H₂O₂ selectivity reported was 8.7% (at 41% H₂ conversion) even in the presence of a H₂O₂ stabilizer. They have observed that the H₂O₂ decomposition to water and oxygen occurs in a consecutive reaction on the same catalyst; the higher the H₂O₂ decomposition activity of the catalyst, the lower is the H₂O₂ selectivity in the H₂ oxidation process.

The flammability or explosive range for the concentration of H_2 in O_2 is very wide (4–94% H_2 in O_2). Hence, the direct H_2 oxidation process is highly hazardous one. However, it can be made non-hazardous by operating it with the H_2 concentrations (in O_2) far away from the explosion range.

This work was undertaken with the objective of studying the performance of different supported Pd or PdO catalysts (such as Pd or PdO supported on alumina, zirconia, ceria, thoria, yttria and gallia, with or without their modification by fluorination, chlorination or sulfatation) in the direct oxidation of H_2 to H_2O_2 using a mixed H_2/O_2 feed (1.7 vol.% H_2 in O_2 , which is far away from the explosion range) and

also in the decomposition of H_2O_2 , in a stirred slurry reactor.

2. Experimental

2.1. Catalyst preparation

The PdO-containing catalysts (Table 1) were prepared by impregnating PdCl₂ from its HCl solution on γ -Al₂O₃, ZrO₂, CeO₂, Y₂O₃ or ThO₂, fluorinated γ -Al₂O₃, ZrO₂, Ga₂O₃, Y₂O₃, ThO₂ or CeO₂, and sulfated ZrO₂ or Ga₂O₃ by the incipient wetness impregnation technique. After impregnation, the wet catalyst mass was dried at 100 °C for 4 h and then calcined under static air in muffle furnace at 500 °C for 3 h. The presence of PdO phase in the catalyst was confirmed by XRD.

Fluorination (or chlorination) or sulfatation was carried out by impregnating the respective support with ammonium fluoride (or chloride) or H_2SO_4 (equivalent to 5 wt.% F, Cl or S on the support) from its aqueous solution followed by drying on hot water bath and calcining in muffle furnace at 500 °C for 3 h.

The PdO-containing catalysts were reduced by treating them with an ammonical hydrazine solution on hot water bath for 2 h followed by washing,

Table 1			
Surface	properties	of the	catalyst

Surface area $(m^2 g^{-1})$	CO chemisorption (at 40 °C) on reduced catalysts ^a (μ mol g ⁻¹)	
174.0	4.1	
203.0	18.8	
171.0	5.0	
54.5	60.1	
325.0	7.3	
31.5	4.8	
12.4	6.1	
4.7	17.2	
8.1	6.1	
12.3	17.5	
0.7	3.7	
0.7	4.3	
19.1	14.1	
34.9	3.8	
	Surface area (m ² g ⁻¹) 174.0 203.0 171.0 54.5 325.0 31.5 12.4 4.7 8.1 12.3 0.7 0.7 19.1 34.9	Surface area $(m^2 g^{-1})$ CO chemisorption (at 40 °C) on reduced catalysts ^a (µmol g^{-1})174.04.1203.018.8171.05.054.560.1325.07.331.54.812.46.14.717.28.16.112.317.50.73.70.74.319.114.134.93.8

 a Reduced by a $H_2{-}N_2$ mixture (10% $H_2)$ at 500 $^\circ C.$

filtration and drying at 100 °C in an air oven. The presence of metallic Pd phase in the reduced catalysts was confirmed by XRD.

2.2. Catalyst characterization

The surface area of the catalysts was measured by the single-point BET method, using a Monosorb Surface Area Analyser (Quantachrome, USA). Chemisorption of CO on the catalyst, after its reduction by H_2 at 500 °C, was measured at 40 °C using a GC pulse technique [5].

2.3. Catalytic reactions

The direct oxidation of hydrogen to hydrogen peroxide reaction over the catalysts was carried out in a magnetically stirred glass reactor (capacity = $250 \,\mathrm{cm}^3$) containing 0.5 g catalyst and $150 \,\mathrm{cm}^3$ aqueous 0.02 M sulfuric acid solution as a reaction medium by bubbling continuously a hydrogen and oxygen mixture (1.7 vol.% H₂) at a flow rate of $11.5 \text{ cm}^{-3} \text{ min}^{-1}$ through the liquid reaction medium under vigorous stirring at 22 °C and atmospheric pressure (0.95 atm) for a period of 3 h. The concentration of hydrogen in the effluent gases, after removing water vapors from them by condensation at 0° C, was measured by an online hydrogen analyzer. After the reaction, the catalyst from the reaction mixture was removed by filtration and the filtered reaction mixture was analyzed for the hydrogen peroxide formed in the reaction by iodometric titration method.

The decomposition of hydrogen peroxide over the catalysts was carried out in the magnetically stirred

reactor containing 0.2 g catalyst and 150 cm^3 acidic (0.02 M sulfuric acid) solution containing 0.2% (w/v) H₂O₂. The amount of O₂ liberated in the decomposition was measured as a function of time using a constant pressure gas collector [6].

3. Results and discussion

3.1. Catalysts characterization

The catalysts have been characterized for their surface area, CO chemisorption (at 40 °C) on reduced catalyst, and relative acidity (measured in terms of the amount of NaOH required to neutralize the acid sites on the catalyst). The surface properties of the catalysts are given in Table 1. The results show that the surface area, CO chemisorption and the relative acidity are strongly influenced by the fluorination, chlorination or sulfatation of the supports (except ThO₂) used in the catalyst. In general, the acidity is increased markedly due to the halogenation or the sulfatation of the support.

3.2. Effect of reaction medium

Results showing the effect of acidity of the aqueous reaction medium on the performance of the different supported PdO catalysts in the H_2 to H_2O_2 oxidation process are presented in Table 2.

The results show strong influence of the acidity of the aqueous reaction medium on both the conversion and selectivity in the process. All the catalysts show much higher activity (H_2 conversion) and H_2O_2

Table 2

Effect of reaction medium on conversion and selectivity in the direct oxidation of H2 to H2O2 over the different catalysts (at 22 °C)

Catalyst	Reaction medium				
	0.02 M H ₂ SO ₄		Pure water		
	Hydrogen conversion (%)	H ₂ O ₂ selectivity (%)	Hydrogen conversion (%)	H ₂ O ₂ selectivity (%)	
PdO/fluorinated y-Al ₂ O ₃	41.8	30.3	2.6	15.0	
PdO/chlorinated y-Al ₂ O ₃	43.1	28.6	4.6	8.3	
PdO/fluorinated CeO ₂	34.4	36.4	2.6	15.0	
PdO/fluorinated ZrO ₂	43.0	26.5	18.5	19.3	
PdO/ThO ₂	28.2	47.3	13.9	4.1	
PdO/CeO ₂	21.0	56.1	9.2	6.1	

selectivity when acidic medium $(0.02 \text{ M } H_2 \text{SO}_4)$ used in the process as compared to the pure water as the reaction medium. This is consistent with our earlier observation that the H₂O₂ decomposition activity of Pd/carbon catalyst decreases markedly with increasing the concentration of H₂SO₄ in the aqueous reaction medium [7]. In the earlier studies using Pd supported on phosphate viologen phosphonate catalyst using aqueous H₂SO₄ as the reaction medium, there was no significant production of H₂O₂ in the H₂ oxidation, even at much higher pressure [3]. The H₂O₂ selectivity observed for the present catalysts using 0.02 M H₂SO₄ or even water as the reaction medium is much higher than that observed earlier for Pd/fluorinated carbon catalyst using an acidic medium [4].

3.3. Effect of catalyst reduction

Results in Table 3 show the effect of reduction of the supported PdO catalysts (by hydrazine) on their performance in both the H₂ to H₂O₂ oxidation and H₂O₂ decomposition reactions at 22 °C. The kinetic data for the H₂O₂ decomposition (at 22 °C) over the catalysts, with or without pre-reduction (by hydrazine) are presented in Fig. 1. The H₂O₂ decomposition data could be fitted well to first-order rate law: ln[1/ (1 - x)] = $k_a t$, where x is the fractional decomposition of H₂O₂, k_a the first-order rate constant and t the time.

The pre-reduced catalysts (Pd^0 -containing catalysts) showed much lower H_2O_2 selectivity and also lower activity (except for Pd/CeO_2) in the H_2 oxidation but much higher H_2O_2 decomposition activity. The decrease in the H_2O_2 selectivity is because of the increased H_2O_2 decomposition activity of the corresponding catalyst after its reduction. These comparative results clearly show that the catalysts in their oxidized form are more selective and even more active in the oxidation of H_2 to H_2O_2 but less active in the H_2O_2 decomposition.

3.4. Comparison of supported PdO catalysts

The PdO-containing catalysts are compared in Figs. 2 and 3 for their performance both in the H₂ oxidation and H₂O₂ decomposition reactions (at 22 °C), using 0.02 M H₂SO₄ as the reaction medium. From the comparison, following important observations for the catalyst with different supports can be made.

Al₂O₃-supported PdO catalysts. Fluorination (or chlorination) has a small effect on the H₂ conversion activity but a very large effect on the H₂O₂ selectivity; the later is increased drastically by the fluorination or chlorination of the γ -alumina. However, the H₂O₂ decomposition (in 3 h) over these catalysts is very small when compared to the H₂ conversion. This shows that the formation of H₂O₂ and water in the H₂ oxidation over these catalysts occurs essentially in the parallel reactions:

$$H_2 \xrightarrow{O_2} H_2O_2$$

$$H_2 \xrightarrow{0.5 O_2} H_2O \qquad (1)$$

Table 3

Effect of the pre-reduction (by hydrazine) of catalysts on their activity/selectivity in the oxidation of H_2 to H_2O_2 and in the decomposition of H_2O_2 reactions

Catalyst	Oxidation of H ₂ to H ₂ O ₂ (at 22 °C)		First-order apparent rate constant for H2O2
	H ₂ conversion (%)	H ₂ O ₂ selectivity (%)	decomposition (at 22 °C), $k_a \times 10^4 (min^{-1})$
PdO/fluorinated y-Al ₂ O ₃	41.8	30.3	0.0
Pd^0 /fluorinated γ -Al ₂ O ₃	16.4	17.6	1.0
PdO/fluorinated ZrO ₂	43.0	26.5	1.3
Pd ⁰ /fluorinated ZrO ₂	18.5	16.8	9.8
PdO/CeO ₂	21.1	56.1	6.3
Pd ⁰ /CeO ₂	20.3	0.0	60.8
PdO/ThO ₂	28.2	47.3	5.1
Pd ⁰ /ThO ₂	18.5	0.0	66.4

Fig. 1. Kinetic data for the decomposition of H2O2 (at 22 °C) over the different catalysts.

Fig. 2. Performance of the alumina- and zirconia-supported (with or without modification) PdO catalysts in the direct oxidation of H_2 to H_2O_2 (at 22 °C) and also in the decomposition of H_2O_2 (at 22 °C).

Fig. 3. Performance of the ceria-, yttria-, thoria- and gallia-supported (with or without modification) PdO catalysts in the direct oxidation of H_2 to H_2O_2 (at 22 °C) and also in the decomposition of H_2O_2 (at 22 °C).

Because of the very poor activity of the catalysts for H_2O_2 decomposition, the possibility of water formation in the H_2 oxidation in the consecutive reaction

$$H_2 \xrightarrow{O_2} H_2 O_2 \xrightarrow{-0.5O_2} H_2 O \tag{2}$$

is small.

The higher H_2O_2 selectivity and the lower H_2O_2 decomposition activity of the fluorinated or chlorinated Al_2O_3 -containing catalyst may be due to its increased acidity (protonic acidity) resulting from the halogenation of Al_2O_3 [8].

 ZrO_2 -supported PdO catalysts. In this case also, the H₂O₂ selectivity is increased drastically after the fluorination or sulfatation of the support. However, unlike the alumina-supported PdO catalysts, the ZrO₂-supported PdO catalysts also have high H_2O_2 decomposition activity, which is decreased after fluorination or sulfatation due to the increased acidity. Hence, the formation of H_2O_2 and water in the H_2 oxidation over these catalysts is expected also by the consecutive reaction (reaction 2).

CeO₂-, Y_2O_3 - and ThO₂-supported PdO catalysts. In these cases, the fluorination of support results in an increase in the H₂ conversion but a decrease in both the H₂O₂ selectivity and the H₂O₂ decomposition activity of the catalyst (Fig. 3). The H₂O₂ decomposition activity of PdO/fluorinated CeO₂ (or ThO₂) catalyst is very low and hence the formation of H₂O₂ and H₂O over the catalyst is expected mainly by the parallel reactions (reaction 1). However, the H₂O₂ decomposition activity of the PdO/ThO₂, PdO/CeO₂ and PdO/Y₂O₃ is quite high. Hence, over these catalysts, the formation of water in the H_2 oxidation is expected mainly by the consecutive reaction (reaction 2).

PdO/fluorinated (or sulfated) Ga_2O_3 *catalysts.* These catalysts showed high H₂ conversion activity but very poor selectivity for H₂O₂ and also poor H₂O₂ decomposition activity, indicating formation of H₂O₂ and H₂O in the H₂ oxidation mainly by the parallel reactions (reaction 1).

When compared for the H_2O_2 yield [conversion (%) × selectivity (%)/100] obtained in the H_2 oxidation process, the catalysts showed the following order (Figs. 2 and 3): PdO/ThO₂ > PdO/fluorinated γ -Al₂O₃ > PdO/fluorinated CeO₂ > PdO/chlorinated γ -Al₂O₃ > PdO/fluorinated CeO₂ > PdO/chlorinated γ -Al₂O₃ > PdO/CeO₂> PdO/fluorinated ZrO₂ ≥ PdO/sulfated ZrO₂ > PdO/fluorinated Y_2O_3 > PdO/fluorinated ThO₂> PdO/fluorinated Ga₂O₃ ≥ PdO/sulfated Ga₂O₃ > PdO/Y₂O₃ > PdO/γ-Al₂O₃ > PdO/zrO₂.

The H₂O₂ yields obtained over the PdO supported on ThO₂ (13.3%), fluorinated γ -Al₂O₃ (12.7%) or CeO₂ (12.5%), chlorinated γ -Al₂O₃ (12.3%), CeO₂ (11.8%), fluorinated or sulfated ZrO₂ (11.4%), and fluorinated Y₂O₃ (7.4%) catalysts are much higher than that (3.6%) reported earlier over the Pd/fluorinated carbon catalyst.

4. Conclusions

From the above studies on the direct oxidation of H_2 to H_2O_2 and H_2O_2 decomposition reactions over the different fluorinated or sulfated Al_2O_3 -, ZrO_2 -, CeO_2 -, Y_2O_3 -, ThO_2 - and Ga_2O_3 -supported PdO or Pd catalysts, the following important conclusions have been drawn.

1. The modification by fluorination or sulfatation of Al_2O_3 or ZrO_2 support causes a drastic increase in the H_2O_2 selectivity of the catalyst but that of CeO₂, Y_2O_3 and ThO₂ results in a decrease in the selectivity and an increase in the H_2 conversion activity of the catalyst in the H_2 oxidation. The PdO/ThO₂, PdO/fluorinated/chlorinated or sulfated Al₂O₃, ZrO₂, and CeO₂, and PdO/CeO₂ are promising catalysts for the direct oxidation of H_2 to H_2O_2 .

- 2. The water in the H₂ oxidation over the supported PdO catalysts is formed in the parallel and/or consecutive reaction, depending upon the support used in the catalyst. It is formed mostly by the parallel reaction over the fluorinated (or chlorinated) Al₂O₃, CeO₂ and Ga₂O₃ and sulfated Ga₂O₃-supported PdO catalysts but by the consecutive reaction over the ZrO₂-, CeO₂-, Y₂O₃- and ThO₂-supported PdO catalysts.
- 3. The catalysts after the reduction of their PdO to Pd^0 (by hydrazine) showed much lower selectivity in the oxidation of H_2 to H_2O_2 and much higher H_2O_2 decomposition activity.
- 4. Both the activity and H_2O_2 selectivity (in the H_2 oxidation) of the catalysts depend strongly on the acidity of the aqueous reaction medium; the selectivity is much higher when the reaction medium is acidic.

References

- [1] G. Goor, W. Kunkel, O. Weiberg, in: B. Elver, S. Howkins, R. Ravenscrafty, G. Schulz (Eds.), Ullaman's Encyclopedia of Industrial Chemistry, Vol. A13, VCH Verlangsgeselscaft mbH, Weinheim, 1989, pp. 443–466.
- [2] V.R. Choudhary, A.G. Gaikwad, S.D. Sansare, Angew. Chem. Int. Ed. 40 (2001) 1776.
- [3] V.V. Krishnan, A.G. Dokoutchaev, M.E. Thompson, J. Catal. 196 (2000) 366.
- [4] L. Fu, K.T. Chung, R. Fiedorow, Stud. Surf. Sci. Catal. 72 (1992) 33.
- [5] V.R. Choudhary, L.K. Doraiswamy, Ind. Eng. Chem. Prod. Res. Dev. 10 (1978) 218.
- [6] V.R. Choudhary, M.G. Parande, P.H. Brahame, Ind. Eng. Chem. Fundam. 21 (1982) 472.
- [7] V.R. Choudhary, A.G. Gaikwad, unpublished work.
- [8] V.R. Choudhary, Ind. Eng. Chem. Prod. Res. Dev. 16 (1977) 12.